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ABSTRACT OF THE DISSERTATION

A Generalized Solution to a Class
of Printed Circuit Antennas
By
Pisti B. Katehi-Tseregounis
Doctor of Philosophy in Engineering
University of California, Los Angeles, 1984

Professor Nicolaos G. Alexopoulos, Chair

This dissertation deals with the theory and design of
antennas éxcited either by a microstrip transmission line or
by a gap generator. The antennas and the strip transmission
line may be embedded inside or printed on the substrate. A
theoretical approach is implemented which accounts accur-
ately for the physical effects involved including surface
waves. The Green's function has been obtained by synthesiz-
ing the fields of Hertzian dipoles which are oriented in
arbitrary directions and which are printed on or embedded in
the substrate. The method of solution is based on solving
the Pocklington integral equation by employing the method of
moments with proper choice of expansion and testing func-
tions. The excitation mechanism is taken into account
effectively by considering it as part of the antenna. The
current distribution is obtained both on the transmission

line and the printed circuit antennas by matrix inversion.

The method accounts for conductor thickness and for

xiy

L
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arbitrary substrate parameters.
As an example, printed strip dipoles excited by a

transmission line embedded in the substrate or by a voltage

gap generator are considered. Current distribution, self
impedance and reflection coefficient for the case of the
transmission line excitation as well as input impedance,
resonant length, resonant resistance and radiation patterns
for the case of the gap voltage excitation are obtained

for a variety of antenna arrangements. A serious amount of
effort is also being placed in evaluating the importance of
higher order surface wave modes which are determined by the
relative dielectric constant and the thickness of the sub-
strate. Comparison of the theoretical results to experimental
data for the case of an electromagnetically coupled printed
strip dipole toa strip transmission line shows excellent

agreement.
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CHAPTER 1
INTRODUCTION

Integrated or printed circuit antennas are a natural
evolution of integrated circuit components and are finding
increased use in the microwave, millimeter and far infrared
frequency ranges. Therefore, the development of antennas
which are amenable to integration with other printed circuit
elements is of significant technological importance.

The microstrip antenna concept dates back about 30
years to work in the United States by Deschamps {1] and in
France by Gutton and Baissinot [2]. Shortly thereafter,
Lewin [3] investigated radiation from stripline discontinui-
ties. Additional studies were undertaken in the late 1960's
by Kaloi [54] who studied basic rectangular and square con-
figurations (patches). However, the inherent advantages of
antenna elements (conformality to a given surface, light
weight, negligible volume, inexpensiveness), were not put to
widespread practice until the 1970's [4]-[21]). The environ-
mental and technological constraints having been resolved,
the task remained to develop analytical methods which would
provide accurate design criteria. Mathematical modeling of
the basic microstrip radiator was carried out initially
either by the application of transmission line analogies to
si-plé'rectangular patches fed at the center of a radiating
wall, or by an open resonator model [9)-[21)., The former

approach gives a heuristic explanation of the radiation
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properties of the antenna, while the latter provides a more
I accurate prediction of the antenna characteristics. However, -

both models apply mainly to the dominant resonator model and

their accuracy is questionable for higher order modes,
especially because they do not account for the excitation
of surface waves.

Surface waves have an important effect on the printed
circuit antenna current distribution, as well as input
impedance, resonant length, bandwidth and efficiency ([34]-
{37). In addition, since surface waves are cylindrical
waves in nature, they decay only as the inverse square root
of the distance from their source and for this reason they
can be significant in mutual impedance computations [26],
an important parameter in phased array design. It has been
shown that, regardless of the substrate thickness and
dielectric permittivity, the dominant surface wave mode is
always excited. The power propagating in this mode is a
function of the characteristics of the substrate. As more
energy is trapped in the substrate, the microstrip antenna

-ecomes less efficient [35]. In many applications, such as

in the millimeter or far infrared region [29)-[31]), today's
C technology provides substrates which are several wavelengths

thick. This permits the propagation of many TM and TE waves

in thé”substrate, further complicating the design. These

modes can also cause impairment of efficiency. It becomes

Nl J
\J

- evident from this discussion that a theoretical approach
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should be implemented which accounts accurately for all the
physical effects involved including surface waves. Such an
approach excludes either of the previously mentioned tech-
niques and relies on treating the microstrip element as an
antenna rather than a transmission line section or as a
resonator.

A microstrip antenna is usually excited either by the
inner conductor of a coaxial transmission line [39)

(Fig. 1a) or by a microstrip transmission line [41]-[43]
printed or embedded in the substrate (Fig. 1b). From these
two ways of excitation, the latter has demonstrated that a
microstrip antenna electromagnetically (EM) coupled to a
microstrip line makes a desirable element for one- and two-
dimensional antenna arrays.

Recently, Oltman and Huebner [40], and later, Stern
and Elliott [41]-[42]) experimentally studied this radiator
as an element as well as part of a two-dimensional array and
they described a design procedure with the objectives of an
input match and a desired radiation pattern.

In this present work, strip dipoles printed or embedded
in the substrate excited either by a gap generator or a
microstrip transmission line are considered. The thickness
of the strips is considered finite and the widths of the
dipolé.and transmission line are assumed to be much smaller
than the wavelength so that the transvérse components of

the current give a second order effect. The current distri-
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bution on the antenna is obtained first by solving a two-
dimensional Pocklington's Integral Equation [38). The
Green's function in this case can be obtained by synthesiz-
ing the fields of Hertzian dipoles which are oriented in
arbitrary directions and which are printed or embedded in
the substrate, therefore accounting properly for all the
boundary conditions pertinent to the problem.

An analytical solution of the two-dimensional
Pocklington's integral equation is precluded due to the
immense complexity of the problem. The use of numerical
techniques which discretize the integral equation and
obtain the current distribution by matrix inversion is
necessary. A numerical method which has found widespread
and successful use for the solution of Pocklington type
integral equations is the Method of Moments [25]-[28]. For
the present application, the Green's function relevant to
the problem is given by Sommerfeld-type integrals which
require special integration techniques when field and source
point coincide [38].

For the case of the antenna excited by a voltage gap
generator, the input impedance is defined as the ratio of
the applied voltage to the input current and resonant length,
resonant resistance, bandwidth and efficiency are evaluated
as fuhction of the substrate characteristics. In the case
of & dipole EM coupled to a microstrip line, transmission

1ine (T.L.) theory is used to derive a form for the self-

.



impedance. The application of T.L. theory becomes possible
by virtue the fact that the distance of the feeding line
from the ground has been kept always very small compared to
wavelength in the dielectric so that most of the contribu-
tion for the electric field under the microstrip line
results from a dominant TEM-like mode. This leads to a
design procedure which, for a given substrate, permits
determination of the length of the dipole, overlap and off-
set so that a desired input match is achieved.

A serious amount of effort has also been invested in
determining the effect of the substrate thickness and
relative permittivity on the radiation properties of printed
circuit dipoles (PCD's). A trade-off between substrate
thickness and resonant input impedance, bandwidth and
radiation efficiency is presented for PTFE glass, quart:
and GaAs substrates. The E- and H-plane normalized power

patterns are also examined as a function of e€_ and h, and

T
it is shown that even for thin substrates, multiple-beam

radiation can result for certainvalues of €. through the

T
excitation of surface waves.

Throughout this work, the cost of the computer programs
was kept very low with the application of special analytical
and numerical techniques for the evaluation of the elements
of tﬁé,impedance matrix. These techniques will be described
since they are quite general and apply to any kind of

printed antenna.
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3 CHAPTER 2
F THE GREEN'S FUNCTION AND POCKLINGTON'S -

INTEGRAL EQUATION

2-1. Derivation of the Green's Function )

This chapter contains a development of the Green's

A MBS
i

Function pertinent to the problem of strip or patch antennas

b printed on and/or embedded in a grounded dielectric sub-

strate of thickness h and relative dielectric constant Epe -
In order to formulate the Green's function, two ele-

mentary horizontal electric dipoles (HED's) are considered

to be at the positions (xi, yi, 0) and (xi, yi, -bs) as

shown in Figure 2.1. The assumed time dependence is eVt

and it is suppressed throughout the dissertation. The
electromagnetic field at any point due to these two dipoles
is the superposition of the fields arising from each one
separately

Bl- w8 (2.1)

. . . (i=1,2)
£ = £ + £ ’ (2.2)
1 2

with (ﬁl,fl) and (ﬁz, fz) the electromagnetic fields in
medium (1) and (2) respectively. Maxwell's equations now

take the following form:

Ux Bl = 3 ¢ jueg Bl (2.3) -
¥x fi = -jwuoﬁi (2.4)
. S8 - o (2.5) o
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Figure 2.1

HED’s Printed on and Embedded in a
Grounded Dielectric Slab
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V-E - E? (2.6)

VeJ, = -jue, (2.7)
iel

e = o ‘ (2.8)
€€, i=2

where the superscript i indicates the medium with the sub-

script v indicating the source. The potential function

i i i
B - uoﬁv = -0xk) (2.9)
is now introduced. Kt will turn out to be the-vector
potential function in medium (i) due to source (v). A
substitution of (2.9) into the curl equation for ﬁt gives

the result
i, iy
vx(Ev-Jva) o . (2.10)
Since Vx(Voi) = 0, it follows that

B« gk, - Vel (2.11)

with Qi the scalar potential in medium (i) due to the source

(v). The relationship between Oi and Ai can be obtained by
substituting (2.9) and (2.11) into (2.3), i.e.
. . . 24 ] .
VxVxK: = V(V*K;) - v213 = 'uojv + kiZ: + Jmeiro0$
(2.12)

If one considers the Lorentz condition

VAL = juegu o) (2.13)
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equation (2.12) reduces to
2 2.7i
@ + kDK = u I (2.14)
where
AL >
jv' x6(r-rv)
The Lorentz condition enables one to write the electromag-
netic field in medium (i) due to source (v), since it

follows that

i 1 221 i
EV - T;E;E; {kiKv + 9 Av} (2.15)

i i
ﬁv = vxxv (2.16)

where
2 .
k% = lwzeouo ? ll
w ereouo i=2

For the case of infinitesimally small dipole sources
oriented along the x or y axis the solution to the inhomo-
geneous equation (2.14), when that solution also satisfies
the specified boundary conditions, is called Green's
function and is given by

%+ kDHFD « 12;2 5CF - T3 (2.17)

ky

For an elementary dipole of arbitrary orientation, this
vector function becomes dyadic and is the solution of the

following inhomogeneous equation

i jwu - - -+
v - ki)?i - -;?2 T6(F - 1) (2.18)

1 AR AN LY.}
where Y is the unit dyadic or idemfactor given by Xxx + yy+ 2z.
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Considering all the equations above, one can prove [45] that
for the case of a general current jv the electric field is
given by
B - J; 2T+ ¥ - FEi/EY) - I, GNaee
v (2.19)
with the integration extended over the volume which contains

all the current sources. One can also deal directly with

the equation
i 221 .
Ux¥xE] - KiE) = -jun J (2.20)
which the electric field satisfies. In this case, the

the dyadic Green's function can be defined as that solution

to the inhomogeneous equation
Baall - k2B = oo Te(F-7) (2.21)

which also satisfies the specified boundary conditions.
Using equations (2.20) and (2.21), one can prove [45], [46]
that
1.+ S
B, - LGv(r/r') 3, (r)ar (2.22)
v
from equations (2.20) and (2.22) the following relation is
true for every Tev:
L @ E/ED - o1+ W) - BL@A-3 M = 0
v ¥Tev (2.23)
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Therefore, it can be concluded that
Ty = ol « ) - B/ (2.24)
‘V?,? eV
For the total field, equations (2.19) and (2.22) can be
written as

ti(?) - T fvﬁi('r'/?') - 3 (Fyar -

v=l,2 v

= f [k T+ . F‘(r/?') .
v=1 2

3v(‘r")d1' (2.25)

The solution which satisfies equations (2.18) and the
appropriate boundary conditions in medium (i) consists of
two parts; the secondary solution which is the solution to
the corresponding homogeneous equation and the primary
solution which is the particular solution to the wave
equation. For the case of a horizontal dipole current along

the x direction 3v(?'), the dyadic function ?i(?/?') has the

form
-1 i ~n
(r/r ) = vax + F, x 2X (2.26)

where the components F (r/r ), F:zx(r/?') were found to be
133}, (37)

( / y jwu © ) -uoz 6i1

r/r' --2( ) L J_(Ap)e .

vxx 4"k§ o
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- {1 - 652602 * 6 Z[ucosh(uz ) +u s1nh(uz )1} - N

v2 12 v

sinhfu(h-z¥ + zVs. 1))

. 115y
0,6, B Ada (2.27)

and i
Jwy, ® “uszt8s,
vzx(r/r ) -—2(—7)(1-er)cos¢f Jl(xp)e
41rki (o]
sinhfu(h-z" + 275 1))
Tlﬁler’h)
i i
cosh{u(h-z" + 2z Gil)] 2

. 0060w A% (2.28)

The various parameters involved in equations (2.27) and

(2.28) are defined as

ue n2kd1t2, ux n2ady /2 (2.29) o
p = [(x-x')2 + (y-y") 11/2 (2.30)

fl(A,er,h) = uosinh(uh) + ucosh(uh) (2.31)

fz(x,er,h) = eruocosh(uh) + usinh(uh) (2.32)

The zeros of fl(k,er,h) and fz(k,er,h) lead to TE and

TM surface wave modes respectively [35], [37)-[39].

2-2 Pocklington's Integral Equation

In this work, the thickness of the metallic strips is
considered finite and the widths of the dipole and the
transmission line, Fig. (2.2) and (2.3) are assumed to be
much smaller than the wavelength in the dielectric so that

the transverse components of the current are a second order

13
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Figure 2.2

Strip Dipole Excited by a Microstrip =
Transmission Line
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Figure 2.3

Strip Dipole Excited by a Gap
Generator '
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effect. If it is assumed that the current density of the

dipole is given by

3\, = vaG') = iJv(x',y',z") (2.33)

where z¥ = 0 when v = 1 and 2= -bs when v = 2, then the

integral equation takes the form

. wY/2 Lv -
BPm=- X f dy’ I dx'[kf I+ W) .

vei1,2 JLwY/2 o
. Fi(?/?')-QJvG') (2.34)

I1f equation (2.26) is substituted into (2.34) the expression

for the electric field takes the form

v L
. w /2 v
i - 3T fv dy" ] dx' .
vel,2 Jw'/2 o
2,1 2
. 3°F 9°F
2.1 XX vzX V2
[(“i"vxx M i ) 3,0y R
2,1 2.1
. 9°F 9°F
2.1 VXX vZx vy 2
+(kivax * vt Oyaz )Jv(x‘.y'.z )y ¢+
2.1 2

(2.35)

3°F a2pi .
e s
2

From (2.35) it is observed thatg the electric field consists
of three components, namely, Ei, E;, and Ei. However, only
the Ei component is needed for the application of the method
of Moments along the x-axis. From equation (2.35), the E;

component is given by
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V/2 o
BzFi aZFi

2.1 vZX vZX v
[kivax * axZ * - 9Xdz ] Jv(x',y',z )

. wY/2 Ly
EGF) = X [ dy'f dx' =
vel,2 4w o

(2.36)

A consideration of the following relationship

aFl 3F
F— (2.37)

leads to _

wY/2 v
'/. dy' dx'

Bl -
X wv/Z 0

v=l,2

3, x',y',2")

(2.38)

. 2 . .
2.1 9 i i
lkivax + axZ (vax’sz)

with Fiz given by (see Appendix A)
-u zis.

i jwu ©

> 0 - o” "1il

Pl z(—-z> (ep1) [ 3,003e
4rk (o

Lfiluocosh(uh)-sizusinhIU(h-zi)ﬂ .

T (%, ,h)
T, e h) ’ )
where
1 i=1 1 v=1 (2.40)
. . 5 . = .40
11 o i¢1 G L i
17 ’

]




CHAPTER 3
TRANSFORMATION OF THE INTEGRAL EQUATION
INTO A MATRIX EQUATION

3-1. Method of Moments

The purpose of this chapter is to present the basic
mathematical techniques for reducing functional equations to
matrix equations. These techniques are then applied to the
specific problem of the strip dipole printed on or embedded
in a grounded dielectric substrate and excited either by a
microstrip transmission line or by a gap generator. A
unifying principle for such techniques is found in the
general method of moments, in terms of which most specific
solutions can be interpreted.

Throughout this chapter, the width of the strip dipole
and transmission line is assumed to be small enough compared
to the wavelength in the dielectric, so that the transverse
component of the current may be assumed to be a second order
effect. It is to be emphasized that in this dissertation
the thickness of the conducting strips is finite. The
method of moments is a general procedure to solve linear

inhomogeneous equations of the type [47]-[52]

Lop () = g (3.1)

where Lo is a linear operator, g is the source or excita-

P
tion (known function) and f is the current or response

(unknown function to be determined). The term deterministic

18
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means that the solution to equation (3.1) is unique; that
is, only one f is associated with a given g. The integral
equation (2.37) for the specific problem that is studied
here can be transferred into an operator equation as

follows:
L) = EX (3.2)

with L3 given by

v L
. w /2 ‘[ v . 2 . .
i, 2.3 ) b RS |
L v'§’2 [wv/z dy‘ A dx' lk1FVXx + m (F\’xx sz)
(3.3)

In addition to the above, it is necessary to define the
inner product <3,(E; X)>, which is a scalar, to satisfy
the following relations in Hilbert space
I, Bl D = <El D, (3.4)
<a + (el %), B> = a<d, B>« 8<(El 1), B> (3.5)

<3*3F 0 ifJ+so

(3.6)
=0 ifJ=o0

where a,B are scalars, Jxh = 0 and * denotes a complex con-
jugate.

A suitable inner product for this problem is
. LV .
S [ 3. 6 e (3.7)
o

Furthermore, Ei(?/?') = E%(?'/?) (v=1,2) and using equation
(2.25) it can be shown that

- . - -- . . - - -
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i, (si 2> = <3, LiE D (3.8)

which means that the integral operator is self-adjoint.

Consideration of equation (3.8) and of the fact that zero

excitation gives no response, it can be proved that there
exists a unique solution to functional equation (3.2) and,
therefore, the inverse operator (Li)'1 exists such that
J-ah!Eln (3.9)
In order to obtain a solution for equation (3.2) in the
form (3.9), we have to follow the procedure described
below: -
1) Expand the unknown vector J in a series
of basis functions spanning J in the
domain of Li. -
2) Determine a suitable inner product and
define a set of weighting functions.

3) Consider the inner products of these

functions with both sides of functional
| equation (3.2) and transform it into a
» matrix equation.

4) Solve the matrix equation for the unknown

vector J.
R y
- 3-2, Galerkin's Method -
For the evaluation of the current distribution on
. ) printed circuit antennas, a specialization of the general

method of moments is particularly convenient. At first, the

20
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unknown current is expanded in a series of functions in the

domain Li as follows

Jo) - 1Y V@ v=1,2
zn: non (3.10)

neN
where the In's are constants. The functions 3:(?) are
called expansion or basis functions. For exact solutions,
(3.10) is an infinite summation while for approximate solu-
tions it is usually a finite summation. Substituting (3.10)

into (3.2) and using the linearity of Li, one.can have

1 @) - ¢l g (3.11)
n

Furthermore, a set of weighting functions, or testing
functions, is chosen to be identical with the basis

functions, i.e.,

Wiy = ) m, neN (3.12)
and then the inner product
v =i i v e Wi iz
E:In <Wo, L (3n)> <Wr, (Ex x)> (3.13)

is formulated. This set of equations can be written in

matrix form as

(g Iy = v (3.14)
where
" AU L AT e Ao AN (3.15)
and
(viy = <R, (el %> (3.16)

. A e e e e o

-
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Since the matrix [Z;:] (as it will be shown in the follow-
ing chapters) is nonsingular, its inverse exists and

equation (3.14) gives
Vy o iv,-1 i
[, [Zmn] [Vm] (3.17)

The vector [3:] is written as

AT &2 T - SN L LI (3.18)
and, therefore, the solution to equation (3.2) is given by
+ v,T iv,-1 i
3@ = 13 12017 1)) (3.19)

One of the main tasks in any specific problem is the choice
of the functions 3:. They should be linearly independent
and selected so that some combination (3.10) can approximate
3(;) reasonably well. Additional factors which affect the
choice of 3: are:
i) The desired accuracy of the solution.
ii) The ease of evaluation of the matrix elements.
iii) The size of the matrix that can be inverted.

iv) The convergence of the solution.

3-3 Impedance Matrix Element Formulation

As mentioned previously, the choice of the basis
functions is determined by many factors dictated by the pro-
blenm ﬁpder consideration. For the case of a printed or
embedded strip dipole electromagnetically coupled to a
microstrip transmission line or excited by a gap generator
the basis functions were chosen to be of the form __ ___ _

22
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| GED = xE) - xJnx(x')Jy(y')a(z'-z“) (3.20)
The J:x(x') are overlapping piecewise sinusoidal functions

{38] of the form (Fig. 3.1),

sin{lk(x'-x )] sin[l(x -x!
J (x') = p - n'l + P L( n*’l )]
nx n-1 s1n(§1i) n 51n(k2x)
(3.21)
with
p . 1 x 9 £x' < X,
n-1 0 elsewhere
(3.22)
p ] 1 X < x' < Xne1
n 0 elsewhere
and
k = ak aeR* (3.23)

1
J;(y') gives the correct transverse variation of the

current density on the strips taking into account finite
conductor thickness. The expression for the function

J;(y') is given by (Fig. 3.2)

Veoty = o 1
Jy(y ) = » (3.24)
- (@)

We

Here, WZ is the effective strip width given by w:-=wv + 28V,
The parameter §¥ is the excess half width, and it accounts
for fringing effects due to conductor thickness [53].
Interﬁretation of the choice for the current density
dependence in y', indicates that the edge condition is

satisfied at y' = tw:/Z, which is an equivalent strip of

23
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Figure 3.1

Piecewise-Sinusoidal Currents on the Printed
Dipole and the Embedded Microstrip Line
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Figure 3.2

Current Distribution on the Dipole in the
Transverse Direction




zero thickness. At y' = tgz, the current density remains
finiie, as is the case for nonzero thickness conductors.
This choice of dependence in y' for the current density
yields, as will be shown, very accurate results for micro-
strip dipole resonant length.

If one substitutes (3.20) and (3.10) into (2.38), then

it can be found that the expression for the electric field

is
. 1V wY/2
iy o n 4 d)" 5(z'- v
E () v-lz,Z ‘?suﬂffxi -[wv/Z [1 4(21:'>2] % (z'-2Y)
v
w
i e

L T,
.[ x dx"(k§ - 1% [F)  (xex',x ) +
[o]

+ F:xx(x-x',xn)] + kzlez(x+x',xn) +

+ Fiz(x-x',xn)]l sin[k(lx'x')] +

. k[Fixx(x+x',xn) - Fiz(x4x',xn)] [6(x'+2) +
+ 8(x'-2,) - 2cos (k2 )6 (x")] (3.25)

Now, the following inner produce is defined

X
. P m . . .
<ﬁ:,(£; X)> = _[ I, () B;(?)s(y-y‘)s(z-zl) (3.26)
. »
m-1
Equation (3.26) combined with (3.25) and (3.15) gives the

following form for the elements of the impedance matrix

26
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TR

. . \Y
24 . §(y-y1)8(z-21)6(2'-2%) [V /2 dy'
mn [sin(k2)1* LwY/2 [1 -(gL')fr
Ve

L [}
fx dx f Yaxt | k%-1?) (EE__ (x+x ) +
o o i VXX x ,xn,xm

+ Fi (x-x',X_,X_) + Fi

-x+x"' +
VXX n’'’m vxx( X+x 'xn’xm)

2
(-x-x',xn,xm)] + bk [Ft n**m

i
+x! +
vax z(x X' ,X_ 93X )

i e + i
sz(x X ,xn,xm) Fv

+

-x+x'! +
I C 2SS 5P 0 B

+ th(-x—x',xn,xm)l . sin[k(2x~x)] -sin[k(kx-xﬂ]
|2
+‘[ xdx [Fi (x+x',x_,Xx_) + Fi (-x+x',X_,X.) -
o VXX *“n’“m VXX 'n’m
i i .
- sz(x+x',xnxm) - sz(-x+x',xn,xﬁﬂ

. sin[k(lx-x)l [G(X’*lx) + 6(x‘-!x) -

- 2cos(k2x)6(x')] (3.27)
with
Fix (x+x',x_,x ) = Fi x 2 2.k
VXX ntTmt VKX g e fpxext )4 (xpexp) ) 4 (y-y ")
(3.28)
and
i i
F' (x+x',x_,x_) = F k
v nomnooove Io-{(X*x')+(xm-xn)12*(y-y')2}
(3.29)
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Figure 3.3

Printed Strip Dipole EM Coupled to an Embedded
Microstrip Line which is Fed by a Coaxial T.L.
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As mentioned in previous chapters, the strip dipole is
excited either by a voltage gap generator or by a microstrip
transmission line embedded in the dielectric. In the first
case, the gap generator is considered at the feed point and
all the elements of the excitation vector become zero

except the one which corresponds to the infinitesimally
small gap. In the case of the electromagnetically coupled
strip dipole, the problem of the excitation of the trans-
mission lins has to be resolved. 1In practice, the micro-
strip line is excited by the inner conductor of a grounded
coaxial line as shown in figure (3.3). Since the
theoretical analysis for such an excitation is very
difficult, other possible models were studied such as a
voltage or current generator at the end of the microstrip

or a voltage_gap generator two subsections from this end.
From these models the only one that gave very good results
was the gap generator but with the condition that the length
of the microstrip line is chosen to be more than three wave-
lengths in the dielectric. This model has been used for the
derivation of the results which will be presented in follow-

ing chapters.
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CHAPTER 4

EVALUATION OF THE SOMMERFELD
TYPE INTEGRALS

4-1, Singular Points and Related Surface Waves
As shown in Chapter 3, the elements of the generalized
impedance matrix are given by

: L \Y
2.7 = X L 13,00 -

mn o v=1,2 mn

Alv(x,er,h;zl,zv)

e - 105,600 da (4.1)

whereL;n is a multiple space integral operator acting on
the zeroth order Bessel function, Aiv(x,er,h;zi,zv)is a
complicated expression of transcendental functions without
singularities and fl(A,er,h), fz(k,er,h) are given by (2.30)
and (2.31). The integral in equation (4.1) is a Sommerfeld
type [44) and the existence of essential singularities in
its integrand necessitates very careful treatment. In this
chapter, the computation of this integral will be shown
explicitly and the approximations employed will be justified
with estimation of the introduced error.

In equation (4.1), the integrand is a function of
parameter A through the radicals

u = ikl (4.2)

u, - [xz-kilk (4.3)

30
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where kl’ kz are the vacuum and substrate wavenumbers
respéctively. The sign of the radical u does not affect the -
single value of the integrals, as the terms involving the

redicals are even functions of u. For this reason, only

the branch cut contribution by the radical u, is considered - -

and its direction is determined by the requirement that the
radiating field is a wave receding from the source. As a

result, the restrictions on ) are:

Re(A) > 0 (4.4)
Im(A) > 0 (4.5)

which in turn impose the following behavior for u and u,:

Re(uo) >0 Im(uo) >0 (4.6)
Re(u) > 0 Im(u) > 0 (4.7) '

A possible position of the branch cuts governed by these
inequalities is shown in Fig. (4.1).

The integrand in (4.1) has poles whenever either one
of the functions fl(x,er,h), fz(x.er,h) becomes zero. The
zeros of these two functions correspond to surface-wave
modes. Particularly the zeros of fl(x,er,h) correspond to
TE surface waves and the zeros of fz(l,cr,h) to TM surface
waves. In the case of a lossless dielectric, these TE and
™ polgs are the roots of the equations u, = ucoth(uh) and

€U, - -utanh(uh). Furthermore, these poles lie within the

range kl < Re(d) < kz.

31
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Figure 4.1

Path of Integration
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The semi-infinite integration in equation (4.1) is

performed along the real axis and is completed in two steps.

(i) Numerical integration over the interval {0,A)
where A satisfies the relationship coth[(Az-kg)!’]
= 1.

(ii) Combination of numerical and analytical integra-
tion for the evaluation of the tail contribution
which is actually the integration over the path
a,=).

Subsequently, it is concluded that the (m,n)/ki,v) element

of the impedance matrix can be split into two parts, viz.,
iv o oiv iv,
zmn zmn(A) * zmn( ) (4.8)

where
: A v A0, e b2t 2Y)
iv » r’ * 4
Zov(A) = f X L O,00  rprenrrnmenn|

o v=1,2 mn

(4.9)
and . .
o * 5z AV (ne,hs2t,2Y) 5
Zan (=) = A vel,2 mn{J°(xp)} t; e by (3,6 ,h)
(4.10)

4-2. Numerical Integration Ae[0,A]

The first part of each element of the generalized

i-pedipce matrix is given by

A Ai“(l € h'zi z“) \
iv - ] r. 1 ] 1
z-“(A) L v-lz.z flT)"er'TD -Tz(x.erﬁi) Lnn“c' (e} dr

(4.11)

- = - - .-
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. v ]
and is evaluated numerically. The operatoern is of the :
form ;T
Lv wY/2 v tx ( Lx

= dy'J_(y") I dxJ__(x) f dx'J__(x') - :
mn LwY/2 y o nx o nx ]
< -3

!

+ [8(p-py) + 8(p-py) + &(p-pg) *+ 8(p-py)] *
+ [G(x'*lx) + 6(x'-2x) - 2cos(k2x)6(x')] .
4
* [8(p-py) + 8(p-p5)] (4.12)
where
: 2 2y ]

py = {(x+x'+x -x )%+ (y-y')°} (4.13) ,

» L

: 2 2y
Py = {(x-x +xm-xn) + (y-y")°} (4.14) :
]

\ 2, (y-y12}
Py = {(-x+x'+x -x ) +(y-y')"} (4.15) 1
: 2, tyoy1y 2} g

pg = T(-x-x"4x -x )+ (y-y')"} (4.16)

me(x), Jnx(x') belong to the set of basis functions |
which have been used for the application of the moments b
method. In the integral of equation (4.11), it has been
found that the space integral operator can make the inte-
grand a slowly varying function of A thereby minimizing o
the error of integration. Therefore, for the evaluation of
z:;, the function |

¥ () =L 1300 4.17 o]
oo (V) 5 (Ap) (4.17)
mn
is transformed into a rapidly converging series of the form
(Appendix B) -
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Spn (M) = ey} l Zo(T_) lxl ToOxpg) #

+ B (k ) d|x| [3o(lxm(n+1)) * Jo(xxmn) *

+ JO(Axm(n_l))]I (4.18)

where Ly is the subsection length (nx < O.OZXO), Jo(xxmn) is

an expression involving Bessel functions and Xon is given by

X = (xm-xn) (4.19)

For the integration with respect to A, because of the
existence of the poles in the strip k; < Re(}) < k,
a further division of the integration integral into sub-
intervals takes place as is shown below:
i) 0 <X < kg, the integration with respect to A
is performed numerically using a Gaussian-
Quadrature method with fixed -~ -~ints.
ii) ky £ X < ky; for the integration along this inter-
val a singularity extraction technique is used
[37}-138) which transforms the integral into a
finite series plus an integral of a slowly vary-
ing function. This finite series gives the con-
tribution of the surface wave modes with the num-
ber of its terms dependent on the thickness of the
dielectric as well as the dielectric constant,

iii) kz < A < A; numerical integration is invoked here
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in exactly the same manner as it is performed in the first

subinterval.

4-3, Evaluation of the Tail Contribution

In this case, the integration with respect to A is
extended along the interval [A,=]. The integrals which have
to be computed are given by

iv i.v
. ® A" (Ae,hi27,27) v
Zon(®) = f L oo w [£ Yo 0e
A v=1,2 1*"*~r? 2" r?

mn

(4.20)

where

: i

. . jwu -u 26,

AV (e ,hi2t,2Y) = 2(2;;%)e or "l |[El(ki-k2)+szk]-
i

(1-aizsv2 + Gizdvz{ucosh(uzv) + uosinh(uzv)]>-

. v v
sinh{u(h-z" + 2 Gilcvl)] . fz(A,er,h) +

+ [Elkz-Ezk] . [}iluocosh(uh)-Gizusinh[u(h-zl)ﬂ .

(er-l) . [lesinh(uh) + szsinh[u(h-zv)]]l A

(4.21)

with El, Ez constants which take the values 1,0. When the

source point and the observation point coincide, p=+0, 2! =

z¥ and the integral above takes the form,
24V c [t AV (e hi2t,2Y) o
In(.) ]A‘ V'l,z fl (X’Er'h)qz(X,er,h)
(4.22)




R -

where C is a constant. For the integrand in (4.22), it can
be proved that, when A << ),
Alv(x,er,h;zl,zv)
i.v

u.lz -2z"| i v
o - -
+E,Q,(A,e hye u12 -2

] Elql(x,er,h)e
fl(k,er,h) . fz(l,er,h)

. EIQI (, €r »h) "EzQz (, Er’h)
fl(A,er,h)-fz(k,ar,h)

= 02”3 (a<1) (4.23)

where Ql(x,er.h) and QZ(A,er,h) are nonsingular functions
of A,er,h as a consequence of which becomes infinite. 1In
order to avoid this Z;:(a) difficulty, which arises in the
computation of the diagonal elements of the impedance
matrix, the conducting strips are assumed to have a very
small but finite thickness, t, with the source current
flowing on the bottom surface and the observation points
located on the top surface. As a result, the distance
between source and observation points is prevented from
becoming zero; the minimum value it can take is equal to

the thickness of the strip. Since A has already been

chosen in such a way that

coth[ (AZ-k3)"%h) = 1 (4.24)
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equation (4.20) can be approximated as (Appendix C),

iv jwu © -u_t v
Y =) u( 0 'D A o (3 -
n 41rk1?) v-};’,z 1(A) (Az_ki)x, ¢ Zm o (uyPt)}

v
*du_+D (A)r e ut* {J_(up®)} du +

D, [ ST Y (w4 }
+ e J_ (up up+
3 (Az-kg)” mn © ¢
+ Error (4.25)
where 5.
é
2 il vl 2
D (A) = {[El(k 1( ) + E 1!] I——ZTK)- + [E k- 210] 611 vl
' N S 1 (4.26)
I'ezlxs Er'I I’eslIS) *
§.,6 §.,8 .+(1+e,(A))S..8
D,(A) = ‘!lﬁl(ki'*z)"iz‘” 1792732 w1 e4(}) i2°v2

2
+ LBl -Ble]l (851602%85, vl)(l__'(I)'+e4 —I

1
. FE;UU’)I (4.27)

2 .2 €4 (A)8;,58,2 .
Dy (A) = l"El(kl"') * B — et Si2de

Ze
1
(m e I—-—m-)l (4.28)
and ' 2
e (A) =1 ol (4.29)
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k2-x?
e,(A) = 7 21 (4.30)
A%-X
, KK
e3(A) = yreery 37 (4.31)
r "%
2 .2
k2-x
e (A) = 7 =— (4.32)
A ’kz
2
1 K3
eg(A) = 3 2, (4.33)
A 'kz
€r kg'k% )
e6(A) = yeT 7 (4.34)
T A - 2
Pt = o[1+e1(A)l (4.35)
05 = pll+eg (A)] (4.36)
t* = b, + t{1+2e4(A)] (4.37)

The error made by the approximation in equation (4.25)

depends on A. It has been found that

- -2y,iv
Error = 0(A IZmnI) (4.38)

and for this reason A always takes values larger than 102.

Therefore, the approximation considered here is a very good

one since the overall error made in the computation of

‘the input impedance is of the order of 0.1%. In equation

(4.25), the integrals can be put in the general form,

® “vs0_ v . .
h I(A?-k}_)’i © L,m Uy use) My, (i=1,2) (4.39)
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where LPR (xz-kg)k 3 o can take either one of the posi-
tive values t, t*, st-t. 1f one interchanges the order of
the operator and the integration, the integral I, can be

written as

v «® -UiO
st &, J;Az-ki)” ) J°(vi°;)dui|‘
v
= 1 1 -
L,,m 5™ Y %
o]
WRICZAD) v
- -f L U 008 (4.40)
(o] gi(A) mn
where k? %
g; (A) = ll + ﬁ (i =1,2) (4.41)
i

I1f one substitutes (4.40) into (4.25), Z;;(w) becomes

-
. . D, (A) v [ 2
Zlv @) = 1 2 t ] l"’
mn( ) v'-lZ,Z gIUU mn (p ) __31[]:] )
-1
D, (A) v [ .« 2
2 2 t
* gztxj mn (p ‘_82(1‘5‘ ) ‘ *
RACEA (pz "st-qz?’f -
. 82[“j mn }Ztux
A (:(At/gl(A)) ) e—(xt*/gz(A))
'\..?:z fo lnlm g, R )* DZ(”( 10
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“A(2bg-t)/g,(A)\|
. 03(A)(e 5 )] [n.m {J,(00)} A (4.42)

From equations (4.8), (4.11) and (4.42), it can be seen

that the elements of the impedance matrix can be split
into two other parts so that the evaluation of each is

simplified

2iv ,zw(A) 42“,(.,) (4.43)
mn mn mn
k where

j.v(A) - LA Y Bi”()\,er,h;zi,zv) LVJ
mn v, 2 |F7Th €, B) -, (%, €,h) mn{ o (Ap)1dA

. (4.44)
iv -k
z (») = Z Dl(A) v 2 t2 2
mn v=]l,2 gllﬂ Lmn (o * gliﬂ ) *
Dz‘“;"(z r tﬂz)"’
* g; (A) mn et _32[]:5- :

. ~2 -k
D, (A) v 2b -t
3 2 s
*gm‘m 6’ T ) (4.45)

and :

Bi"(A,er,h;zi,zv) = Aiv(l.cr,h;ziz'v) -
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Y

-(rt/g; (1) e-(xt*/gz(A))\
MO + D, (A) +

IO R

- Dl (A) £

-2 (2b-t)/g, (A)

+ D5 (A)|S 510 (4.46)

" The first term on the RHS of equation (4.43) is evaluated
with the technique which was described in Part 4.2 of this
chapter, while for the evaluation of the second term a more
careful treatment is necessary in order to keep the error
of integration within acceptable limits. The operation
of £ v on the function (pz + o 12)* (Eq. 4.40) can be

g5 (A)
written in the final form

Ll ])}f"’z___dz;_.

wY/2

f: in(kx,) L (2 2,2, o + 2 .
atsm Xt n x,t Yy (m) XT)

=-2
v
+ Ln {ﬂ(p, ._m.gi" )” (4.47)
where a_ = constant, x, = T2, + x -x and ﬁ(p, ) is

a slowly varying function of p. In equation (4. 47) all the

re-aining integrals are evaluated numerically by using the
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Gaussian Quadrature method of integration and in this

manner the error introduced is of the order of

(002" ),
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CHAPTER 5
‘NUMERICAL RESULTS FOR SELF AND INPUT

IMPEDANCE OF PRINTED STRIP DIPOLES

5-1. A Printed Strip Dipole Excited by a Microstrip
Transmission Line Embedded in the Dielectric

In this case, the excitation mechanism is provided by
a8 strip transmission line embedded inside the substrate (see
Figures 5.1, 5.2) which couples energy parasitically to the
microstrip dipole. Since the radiation mechanism of a
microstrip dipole is very similar to that of a microstrip
patch [55], the model developed in this dissertation is
applicable to the analysis and design of microstrip elements
which are rectangularly shaped but with a width smaller than
the element length. Reference to Figures 5.1 and 5.2 gives
reinforcement to the assertion that the parameters of the
problem are arbitrary in the development of the model,
including substrate thickness and relative permittivity to
account for previously recognized substrate effects [33] -
[38]. 1In addition, the thickness of the metallic conductors
is included, strip transmission line and microstrip antenna
widths may differ and the effects of the microstrip dipole
overlap and offset with respect to the transmission line on
the current distribution are investigated. If one deter-
mines the current distribution by applying the method of
lo-ent§ (see Chapter 3), then transmission line theory is
invoked to evaluate at the chosen reference plane, the self

impedance 2, of the microstrip dipole. This leads to a
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Figure §.1

Side and Top View of a Printed Strip Dipole
Excited by a Transmission Line Embedded in

- the Dlelectric i .
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Figure 5.2

Cross Section of a Printed Strip Dipole Excited
by a Transmission Line Embedded in the Dielectric
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design procedure which yields the microstrip dipole length,
overlap and offset so that a desired input match can be
achieved for a given substrate. In all the results which
are going to be presented below, the operating frequency is
10 GHz.

A. Self-Impedance Evaluation

For the evaluation of the microstrip dipole self-
impedance, transmission line theory is applied and, because
of this, unimodal behavior of the field far from the strip/
dipole coupling region is essential. 1In order to satisfy
this requirement, the transmission line is kept very close
to the ground plane giving a ration wZ/(h-bs) > 2.0.

For the particular geometry considered here, a uni-
modal field is excited under the transmission line and, as
a result, the amplitude of the current distribution beyond
an appropriate reference plane looks like a standing wave
which is due to TEM waves traveling in opposite directions.
For this reason, the microstrip line is approximsted by an
ideal transmission line of characteristic impedance Zo which
is terminated in an unknown impedance (see Figure 5.3).
This Quasi-TEM mode has a wavenumber 8 and a standing wave
ratio SWR equal to the average values evaluated from the
original current,

" If the origin of x coordinates is taken at the posi-
tion of Zs. then the voltage and current waves on the ideal
transmission line, with respect to this plane of reference,

are given by:
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Figure 5.3

Current Amplitude on the Strip Dipole and
Microstrip Transmission Line
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V(x) = Ae IEX 4 BelBX (5.1)
and
1(x) = 3-(Ae IBX. pelBX (5.2)
o
If one considers the positions x and Xpin of two con-

secutive maxima and minima, equation (5.1) gives

_ B i2Bx .. _s ]
Imax 1 7. % max JB(xmax xmin)
— = TIER e (5.3)
min B min
]l - Ke

Since the absolute difference between x and X is

max n

equal to one-fourth of the wavelength of the guided wave

x = Ag/4), then equation (5.3) can be written as

(Xmax™*min
j 28x
B J max T
Imax - 1-xe etJT (5.4)
I JZBX_+ ’
min 4 | % e min

The reflection coefficient I' is defined as

r(x) = 3 eI26X o r(0)el 26X (5.5)

If one considers that

1 tj%
y= {8Xe 2 (5.6)

min

then equation (5.3) gives the following expression for the

reflection coefficient,
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F (o) =-YXije M (5.7) -
From (5.1) and (5.2) an expression for the self impedance

Zs evaluated at the position X, can be written as follows:

Zg(x)) 1+ T(x))

T T TSI (5.8)

If now this plane of reference is considered at the posi-
tion of the first current maximum dmax from the end of the
open circuited transmission line, then the self impedance

measured with respect to this plane is given by -

jzadmax
Zs(dmax) ) 1 + ”dmax) N 1+ I‘(O)e' (5.9)
—Z =T ) L. r(O)eJZBd"'a" B

ki o

Since for the evaluation of I'(d ), the method of moments

max
7 together with transmission line theory has been applied,
F equation (5.9) indicates that the evaluated self impedance
depends on the characteristics of the substrate (er,h) as

well as on the embedding distance of the transmission line,

the overlap, the offset and the length of the dipole.

The fundamental design procedure is now revealed.
One wants to choose, for a given substrate, the right posi-
tion of the dipole so that optimum resonance (in other

words, perfect match) is obtained. The condition for

HERAGS MR Mt

optimum resonance is characterized by the relation




Zs(d

)

max_ « 3 (5.10)

(o]

which combined with (5.9) gives

ra...) =0 (5.11)

max
or

rx) =0 (5.12)

This ‘'means that one wishes to find the geometry which

perfectly matches the dipole to the transmission line.

B. Dipole Length and Overlap Variation

The self impedance is evaluated using equation (5.9)
as a function of the length Ly of the dipole and the over-

lap Kovp

51

ovp = SI % (5.13)
where Si is the part of the surface Sd 6f the dipole which
is over the transmission line (Fig. 5.1). The real and
the imaginary parts of the normalized self impedance are
plotted (Fig. 5.4) for a substrate thickness h = 0.077",
dielectric constant €, = 2.53 and embedding distance
bs = 0.0485"., The width of the strips is w = 0.060" and
the thickness t = 0,00025". The length of the dipole is
varying between 0.373" and 0.349" and the overlap takes
values between 38% and 868%. Figure 5.4 implies tﬁat as the

overlap becomes larger, the dipole length curves approach
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the origin of the axis, which means that as the dipole
moves to the left from the end of the transmission line,
the coupling weakens and the reflection coefficient on -the
microstrip line approaches its value at open circuit.
However, there exists a particular overlap for which the
curve of the dipole lengths goes through the point ;f = ]1;
in other words, for the geometry considered above, there is
one value for the overlap and a specific dipole length so
that the dipole is perfectly matched to the transmission
line.

C. Dipole Length and Offset Variation

It is of interest to investigate now the dependence
of the normalized self impedance on the offset and the
dipole length. Again, the real and imaginary parts of the
normalized self impedance are plotted (Figure 5.5) for a
substrate thickness h = 0,077", dielectric constant € =
2.35 and embedding distance bs = 0.0485". The width of the
strips is w = 0.060", the thickness t = 0.00025" and the
overlap Kovp = 50%. The length of the dipole varies
between 0.373'" and 0.349" and the offset takes the values
0.00", 0.02'", 0.04", and 0.08". From Figure 5.6 one can
see that as the offset becomes larger, the coupling weakens
and .the dipole length curves are shifted to smaller values
for the self impedance. Also, the resonant length of the

dipole, or in other words the dipole length for which the

self impedance becomes real, is a monotonically descending
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of ;he offset, which means that as the offset changes to
larger values, the dipole self impedance becomes more
capacitive. Again, as happened in the case of the overlap
variation, one can see that there exists a specific offset
which can give optimum resonance if the dipole length is
changed appropriately.

D. Dipole Length and Substrate Thickness Variation

As mentioned before, the normalized self impedance
is also a function of the substrate characteristics and
the position of the transmission line. 1In order to examine
this dependence, the width, thickness, overlap and the
distance of the transmission line from the ground plane
are kept constant at the values given above, the dielectric
constant becomes equal to 2.53, the dipole length is varied
again between 0.373" and 0.349", and the substrate thick-
ness takes the values 0.0645'", 0.0765", 0.0825", and
0.0945", Figure 5.6 indicates that as the substrate thick-
ness takes larger values, the coupling between the dipole
and the transmission line becomes smaller, the dipole
resonant length decays monotonically and the self impedance
for a given dipole length becomes more capacitive. Also,
as happened in the two previous cases of the overlap and
offset variation, there is a unique value for the embedding
distance which combines with the appropriate dipole length
to give a perfect match.

It is also interesting to see how the current dis-
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tribution changes as a function of the substrate thickness
h around optimum resonance. Figure 5.7 displays the cur-
rent distribution normalized to the incident current on the
transmission line for h = 0.099" (undercoupled), h=0.093"
(perfectly matched) and h=0.082" (overcoupled). The sub-
strate is duroid (er = 2,53), the distance of the trans-
mission line to the ground plane is 0.0285" and the length
of the dipole L1 = 0,.353", As shown in the figure, the

current on the dipole takes its maximum value when it is

perfectly matched.

E. Comparison with Experimental Results

The theoretical analysis of a printed strip dipole
electromagneticaliy coupled to an embedded microstrip line
is tested by comparing theoretical results to experimental
ones. Stern and Elliott [43] measured experimentally the
self impedance of strip dipoles with rounded corners
(Figure 5.8) printed on duroid boards (sr = 2.35) of sub-
strate thickness h=0.077", excited by a microstrip trans-
mission line in the dielectric at a distance from the
ground plane equal to 0.0285"., The width of the strips was
w = 0,060" and the thickness t = 0.00025". The self
impedance was measured for different dipole lengths and
1ts"normalized values are shown on a Smith chart (triangles)
in Figure 5.9. The solid line corresponds to the theoreti-

cal results. From Figure 5.8 one can see that the experi-
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mental resonant length is about 0.390'" while the theoreti-
E cal one is 0.379". Therefore, there is a difference of - -
2.75% with approximately 2% resulting from the different n
shapes of the dipoles. Those which were studied analytically |
. h ~ a rectangular shape whereas those measured experi- -

mentally had round corners [56].

The difference between the theoretical and experi-
B mental values of the self impedance has two attributions: -
i) Different shapes of the dipoles
ii) The fact that in the theoretical evgluation
of the current, the hybrid nature of the -
modes propagating in the microstrip was |
taken into account while for the experi-
ments only an equivalent TEM mode was coe

measured.

5-2, Strip Dipoles Excited by a Gap Generator

This section of Chapter 5 presents design procedures

for microstrip dipoles printed on or embedded in the

dielectric substrate. The dipoles are center-fed by an in

.
.

3
.
.

S
®
-

.

phase unit voltage delta gap generator. All the dimensions

presented are normalized with respect to the free space

wavelength xo. Due to an assumed time dependency of eJ”t,

e

inductive reactance is positive in all plots. The dipole } j
is considered either alone or in the presence of parasitic 3
dipoles printed or embedded in the dielectric. The
material given here relates the antenna geometry (dipole ]

6!
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length, substrate thickness, dipole-ground plane distance,
position and length of the parasitics) to antenna charac-
teristics (resonant length and resonant resistance). The
presentation of the numerical results is completed in three
steps: At first, a dipole embedded in the substrate is
considered and its characteristics are discussed in terms
of the embedding distance. After that, this dipole is con-
sidered in the presence of one printed parasiticdipole and
the change in its performance is studied. Finally, the
same dipole is considered in the presence of two parasitics,
one printed on the interface, the other embedded in the
dielectric. Its characteristics are studied in terms of
the relative positions of the parasitics as well as their
overlap.

A. One Dipole Printed or Embedded in the Substrate

One of the most important characteristics of a dipole
is its input impedance (Fig. 5.10). Figures 5.11 and 5.12
show the real and the imaginary parts of the input imped-
ance when the strip dipole is printed on a duroid board
(er = 2.45) with substrate thickness h equal to 0.2 Ao and
for different strip widths (w = O.OOOZAO, 0.00110, 0.0lko).
Figure 5.11 shows that the input resistance around reson-
ance is insensitive to width variation while its value far
from'fesonance becomes lower as the width increases. The
effect on the resonant length is also very small as Figure

§.12 reveals. However, the input reactance is very sensi-
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Figure 5.10

The Input Impedance of a Printed Strip Dipole
Excited by a Voitage Gap Generator
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tive to changes in the width taking much lower values as
the width becomes larger. From the figures one can con-
clude that the behavior of the input impedance of a printed
strip dipole as the strip width is varied is similar to
that of a free-space wire dipole as its radius is varied.
Figure 5.13 shows the curreat distribution in amplitude

and phase on a strip dipole printed on duroid (er = 2.45)
with substrate thickness h = O.ZAO, w = O.leo,

t = 0.00017\o and for L equal to 0.62A°, 0.347k°, and
0.248A°.

Consider now the dipole shown in Figure 5.10 for
duroid of dielectric constant €, = 2.53, substrate thick-
ness h = 0.06510, thickness of strip t = 0.0001Ao and
width w = 0.0510. Figure 5.14 shows how the resonant
length Lr and the resonant resistance R, vary as a function
of the embedding distance bs. It is interesting to note
that as the strip dipole enters the dielectric substrate
and moves closer to the ground plane, the resonant length.
decreases to a minimum value when the dipole is at an
embedding distance equal to the half of the substrate
thickness, and after that increases to a maximum value
when the dipole approaches the ground plane. However,
the behavior of the resonant resistance is different. It
tlkés,its maximum value when the dipole is printed on the
interface and decreases to zero as the dipole enters the

interface and moves close to the ground plane. The reson-
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of a Strip Dipole as Functions of the Embedding
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g ant resistance when the dipole is on the interface takes :

i such a small value because the substrate is thin and the ?—J

? strip dipole is wide.

- 9

. B. One Embedded Strip Dipole Excited by a Gap o
Generator in the Presence ot a Printed Parasitic :si

g Dipole {

The dipole of Figure 5.15 is now considered. 1In

this case, the relative dielectric constant for the sub-

strate is 2.35, the substrate thickness h is equal to "

0.06SA°, the strip thicknesses are t,=t, = 0.0001, the

E‘ strip widths are w, = W, = 0.05)  and the overlap is 23%.
S As shown in Figure 5.16, the resonant length of the

excited dipole as a function of the embedding distance

does not go through a minimum as happened in the .case of
the single dipole but decreases monotonically as the
exciter approaches the ground plane. The behavior of the
resonant resistance is not that much different. For values
of bs smaller than half of the substrate thickness, it
oscillates around a value of 15 ohms and for bs larger
than h/2 it decreases monotonically to zero as the exciter

goes very close to the ground plane. It is interesting

to compare the variation of the resonant length and
resonant resistance as functions of the embedding distance ]
for the cases of the single dipole and the dipole in the T
presehce of a parasite (Figures 5.14, 5.16). One can |

observe that the parasitic not only changes the behavior

of the resonant length and resonant resistance, but also T
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Embedded Strip Dipole Excited by a Voltage ]
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makes their values larger. This means that the band-
width and the efficiency of the antenna are increased. It
is also interesting to see how the resonant length and
resonant resistance change as functions of the substrate
thickness when the distance of the exciter from the ground
plane is held constant. In Figures 5.17 and 5.18, the
resonant length and resonant resistance are shown as

functions of h when e¢_ = 2,35, Wy =Wy = O.OSAO, ty=t, =

T
0.0001A°and h-bs = O.IAO, O.ZXO respectively. In the

first of these two figures, the substrate thickness takes
values between 0.15)\o to 0.2510 while in the second one h
varies between 0.0657\o and 0.07510. Except for the differ-
ence in values the behavior of L. R, is the same in both
cases. From Figures 5.17 and 5.18 one can see that as the
parasitic dipole moves to greater distances from the exciter
the coupling weakens and the resonant length and resonant
resistance of the embedded dipole asymptotically tend,as one
would expect to the values they have in the case of the .

single excited dipole (Figure 5.14).

C. An Embedded Strip Dipole Excited by a Ga
Generator in the Presence ol Two Parasitic
Dipoles

The geometry for this antenna is shown in Figure 5.19.

For this arrangement, with e = 2.35, h -0.06510, b, =
0.041A°, ty = ¢, 0.000IA& Kovp K ovp 80%, W, =W,
0.0510. the real and imaginary parts of the input impedance

for two different values of & (distance of the embedded
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parasitic from the interface) are given in Figures 5.20 and
5.21. From these two figures, one can see that, as the
parasitic approaches the exciter, the resonance occurs at
longer lengths of the excited dipole, while the tandwidth
decreases and the resonant resistance increases to values
above 100 ohms. The resonant length and resonant resistance
as functions of the embedding distance § are shown in

Figure 5.22 for two different values of the overlap

(50%, 80%).
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CHAPTER 6
RADIATION PATTERN OF PRINTED STRIP DIPOLES

gy

6-1., Formulation of the Equations for the Far-Zone Field

Radiation pattern or far zone fields can be obtained

by using a rigorous numerical technique as described in
{ Chapter 2. The numerical technique, although valid for all

distances, is quite expensive for the far zone computations.

In the calculation of the radiation pattern, only the far
zone fields above the air-dielectric interface are required.
Hence, the conventional stationary phase method [57]-[58]
can be used. The details of the method are covered in
Appendix D. When a printed strip dipole is excited either
by a gap generator or by a microstrip line embedded in
the substrate with h - bs << ko (see Figure 6.1), the far-
zone field is due totally to the radiation from the dipole.
Under this assumption, the far-zone electric field is given
by -5k, F

E(r,6,6) = &—p— R R, (6.1)
In equation (6.1) Ry is a scalar (called the antenna shape

factor) and is given by
cos(kllxsinecos¢) - cos(kzx)

R, = j260

*

2 L[ ]
k sin(kzx)[l - ;%— Sinzecoszq

o =

J(k e sinesing)- 2 swl.e.e)) -
o\l T~ sinesin®j- 5 S(w,9,
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Figure 6.1

Printed Strip Dipole Excited by a Microstrip
Transmission Line Embedded in the Dielectric
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. eJklBls1n¢sin9ejk1alsmecos¢

n jkl(nzx)sinecos¢ (6.2)

I e

where Jo is the zeroth order Bessel function and S(w§,6,¢)

is the integral

] rcos™ (w/w) wl
S(we.e,¢) = A cos[k1 Vi sin¢sinbcosoldo
(6.3)
Also, is is a vector called the substrate factor and has the
form
is-ensewkw (6.4)
where
Rse = -COS¢ Ker,h,e)[cose + (cr-l)sinetaneA(er,h,e)]
(6.5)
Rs¢ = sin¢ O(er,h,a) (6.61
and
1 cos9
Q(C oh’e) = * { }
T )
cose-jler-sinze cot(kller-sinze h)
(6.7)
’ €,COS0+ j/er-sinze tan(kller-sinze h)
(6.8)
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1 6-2. Effect of Substrate Thickness and Permittivity on
Fﬂ the Radiation Pattern -

An investigation of the expressions given for the far-
; zone electric field indicates that the effect of the sub-
strate properties on the radiation pattern is controlled by s

the factors O(er,h,e) and A(sr,h,e). Furthermore, it is

verified that O(er,h,e) is a result of the substrate guided

TE modes, while A(er,h,e) is due to the TM modes. A

thorough analysis of & indicates that it determines the

position of the nulls and the principal as weil as secondary

maxima of the pattern for 6 < ;. If one considers the -

radiation pattern of a strip dipole at resonance, then the

number of the lobes and the position of the nulls are

totally controlled by the substrate. -
A. Number of Lobes

The number of lobes in the radiation pattern can be

determined from the equation

2/%; ;‘:--[z./_—'rr.r = ;‘:]+ N+a (6.9)

where the brackets indicate the integer value of, N is an
integer, and a is an arbitrary real positive number less
than one. From equation (6.7), the following cases can be
identified:

"1) If N = 0, there exists a single lobe with

maximum at 6 = 0.

2) 1£f N>0 and a>0, there exist 2N + 1 lobes
with one of the maxima at eygug.
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3) If N>0 and a -0+, there exist 2N lobes

with a null ate= 0,

B. Positions of Nulls (N> 0)

hi From equation (6.9) one can derive the relation
} wes LeloveT B 4 (6.10)
r i, T % '
If it is assdﬁed that
A —1h]|.
Zer~ 'ro'] m
- th

then the position of the n

Gn 1,2 * tSin-ﬂ/;r -(ZH;X;5 (6.11)

where « = m+n and n = 1,2,...,N.

pair of nulls is given by

The dependence of the £ and ﬁ-plane normalized radia-

tion power patterns on €_ and h can now be investigated.

T

For a duroid substrate with €, = 2.35 and for a substrate
thickness of h = O.ZAO, equation (6.9) is satisfied for N=0
and a = 0.613 and therefore the radiation pattern consists

of a single lobe as shown in Figure 6.2a. In light of

(6.7), it can be verified that for h = O.ZXO. 0.975x° and ]
1.05A° the ¥ and # plane normalized power patterns will have
one, two, and three lobes respectively, as shown in Figures
6.2b, 6.3a, 6.3b.

-~ 1f the substrate thickness h is fixed, e.g., at
hs= 0.101610, then the ¥ and ﬁ-plane normalized power pat-

terns are shown in Figures 6.4a, 6.4b and 6.5a for € = 2,
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10, 35 respectively. With increasing €y» We observe that
the PCD directivity is decreased because more energy is
radiated close to 6 = % direction along the length of the
antenna as the number of modes guided in the substrate
increases. It is further observed in Figure 6.5b that
when e, = 25 and h = 0.10162  , there exist three lobes and
according to (6.11) the nulls are 6 = +62.111°. This last
case has uncovered an interesting phenomenon which is the

radiation at angles & very close to % . This- will be

described in the next section.

6-3. Radiation along the Horizon

As mentioned above, an interesting phenomenon is the
existence of nonzero radiation close to the horizon in
either the §i or the plane when the electrical thickness of
the substrate satisfies specific criteria. In particular,
ﬁ-plane radiation along the horizon is seen to occur when
a TE surface mode turns on in the substrate and f-plane

radiation close to the horizon is seen to occur when a T™™

mode is excited and the substrate can support more than one
“Jbe. This phenomenon is explained analytically by the .
coincidence of a pole and a branch point in a Sommerfeld- E
type integration.

- In order to highlight the criteria under which radia-
tion ‘long the horizon takes place, the case of the dipole
of Figure 6.1 will be considered in detail. If one studies

equations (6.1) - (6.8), it can be ggen_that the ﬁ-apd E-

P
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r-

plane radiated fields are given by

-jk1R
Eq (E-plane) = Sp— R_(¢=0). ¢(e,,h,0)
sinze
“jces® + (e,.-1) o5 Aleg,h,0) (6.12)
and
-jk,R
e 1 n
E,(H-plane) = S——R (6 = 7) o(c,,h,0) (6.13)
From equations (6.12) and (6.13), one can obtain
-jklR
e . 7 < Ty .
Bo " Tk R0 =7, 8= 7
6+7
., lim j cos (6.14)

w
6+3 v/er—sinze cot(kl./er-sinze h)

In words, the radiated field in the H-plane tends to zero
at the horizon (8+n/2) unless the denominator also tends to

zero as 6+n/2. When cot(kl/er-l h) is equal to zero then,

2n/e T 2. ime1) 3 (6.15)
(o]
TR . Wl mo-0,1,2,... (6.16)
[o]

Equation {6.16) is simply the condition for a TE surface
wave mode turning on. Equations (6.14) and (6.16) imply
that there is nonzero radiation at the horizon in the H-
plane pattern when a TE surface wave mode turns on. For the

E-plane pattern one finds that
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-jk,R
1
E, =& R.(¢= 0, 6=2) (e.-1) 1im -S°%8_ . ¢
ee“ EIR a z T o7 ler-IS
(6.17)

Therefore, at 6 = ; the radiation in the Elplane is always
zero. However, it has been observed that for 6 = ; - b,

where b is a very small angle, the radiation is nonzero when

/i1 §-= 2 om=1,2,... (6.18)

and when the substrate can support more than one lobe, i.e.,

2/e; {1- - [2/_-Ter- ;‘—] +a (6.19)

o o
Equation (6.18) combined with (6.19) gives

Ve T %‘: =(!}) m=1,2,... (6.20)

Equations (6.16) and (6.20) provide a set of curves (see
Figure 6.6) which one can use in order to choose the right
substrate so that the dipole radiates close to the horizon
either in the ﬁ-plane or in the ﬁ-plane. Figure 6.7 shows
the ﬁ-plane pattern of a strip dipole at resonance printed
on a substrate with €, = 2.1 and h = 0.238Ao and Figure 6.8
shows the ﬁﬂplane pattern of the same dipole printed on a
substrate board with €, = 2.286 and h = 0.6614x°. Also,
Figure 6.9 shows the f-plane pattern when e, = 4 (Quartz)

snd h= 0.28510.
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Figure 6.6

Dielectric Constant vs. Substrate Thickness for
TE and TM wave Contribution to the H and E

- plane Radiation Patterns
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Figure 6.7

H -plane Radiation Pattern of a Printed Strip Dipole
with ¢+2.1, h= 0.238 . and w=t=0.0001a.
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Figure 6.8

H - plane Radiation Pattern of a Printed Strip Dipole
with ¢,22.286, h=0.6611. and w=t«0.0001..
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Figure 6.9

E -plane Radiation Pattern of a Printed Strip Dipole
with ¢24 , h=0.2851. and w=t=0.0001].
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APPENDIX A
FORMULATION OF POCKLINGTON'S INTEGRAL EQUATION
(2.35) IN THE FORM GIVEN BY (2.37)

In Chapter 2 it was shown that the integral equation

for the electric field is given by

N wY/2 L
E;(r)= Z j: dy'f dx'

vel,2 J-wY/2 o
2.1 2.1
3 9°F S
2pi VXX vzZX v
kil:\)xx + axz *+ =x52 Jv(X',Y',z ). (A.1)

If one considers the relationship

i i
aszx Bsz
—3z " " Tx (A.2)

then equation (A.1) can be written as

. wV/2 L
El(?) = 2 [ dy'L vdx'
vel,2 LwV/2

. 2 . .
2.1 9 i i v
lkipvxx + ax! (Foxx - sz)' Jy(x',y',2z7)

(A.3)

From equation (A.2) the function F\l’z is given by

g 3 i _ ? i
Foz 'fdxﬁszi dx'bz_iszi (A.4)

By substituting (2.28) into (A.4) one can obtain

. jwp
F;z(?/'f") = 2(——%) (er-l) ﬁx cosé

i . v,V
u,z 85y sinh[u(h-2"+2 le)]

2 jaJ ro)e
’u—ilo 1(*e)e T (e ,h)
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-

cosfu(h-zi+z18, )
il dr =
T, h)

j /‘)uo [ -}
= 2(—'_7)(Er'1) dx cos?[ JI(Xp)e
4'nki o

Bll ocosh(uh) - 2usmh[u(h

-u_z3s

o il

z )ﬂ .

fi(),e h)

Bvlsinh(uh) . szsinh[u(h-zv)ﬂ

A~da

£,(0,e.,h)

From the relations
p = [(x-x')z + (y-y')zl;2

and

ey !
cos¢ = Z_Z_

it is determined that

%;T = -cos¢

and
d(*p) X T dx' dp
I | dJo(xp) )
T T dxT cos¢d

b 'Jl(lp)

A substitution of (A.8) and (A.9) into (A.

Fd/E) - z(i“k )(e -1)] J_pde
i
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i

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

3
athetbgbemtnd




[5i1u°cosh(uh) - Gizusinh[u(h-zil]]_.

n - YI(A,Er.h)
r lesinh(uh) +6,; sin}iu(h-zv)‘]]_. AdA (A.10)
. —_— TZ(X,Er.h)
-1
i -
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APPENDIX B
EVALUATION OF THE SPACE INTEGRALS IN THE INTERVAL

Ae[0,A]

As shown in Chapter 4, the elements of the generalized I

impedance matrix are given by

ziv - fv Aiv(x,er,h;zi,zv) L v
i o v=I2|T, (X, e ) - 5,0 e Y| un 1o (AP) }dA
‘ (B.1)
where
: v
L 3_00) - 8(r-y") 2z .[wvlz dy' JV(y') - -
mn © (sin(k2, 1" Ju/2 y o
!‘x 2x ' . . , K
E) L dxj; dx' sin[k(2,-x)] sin[k(2,-x')] - .

[8(p-py) + §(p-py)+6(p-p3) + 8(p-py)] ¢+

'3
+ EZ J£ X ax sin[k(lx-x)] [6(x'+2x) + 6(x'-2x) -

-2c0s (l2,)6(x')] « [8(p-py) * c(p-ps)ﬂ + 3, (%)

(B.2)
with P12PysP31P, given by equations (4.13) + (4.16) and o
given by
: , 2 11215
p o= {(x-x"+x_-x )% + (y-y')°} (B.3)
The Bessel function in equation (B.2), because of (B.3), can

be written as
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3o 00) = It Geextexg-x)® ¢ 2ty

cos(A(y-y')sine)de
(B.4)

. et _
1 fﬂ eJA(x x'4x xn)cose
()

I1f one substitutes (B.4) into (B.2) and interchanges the

order of integration, the multiple space integrals
v
{JO(AD)} take the form
mn

L\’ {J_(2p)) = G(Y-)'il . % J—ﬂde ejl(xm-xn)cose
m o © (sin(k2,))° A

x x

E1 f dxf dx' sin[k(lx-x)]sin[k(lx-x')] .
(o} (o}

[e_'ix(x-rx')cose‘h ejx(x-x')cose+ ej)‘(-x*x')cose .

-Jxlxcose

Sy (s jA_coséb
. eJA( x x')cose] + E, [e X ‘e .

L .
- 2cos(k9.x)] . fx dx Sin[k(lx-x)] [eJchose+
()

_ w/2
+ e IAxcostyi . f o, dy'30(y")cos (A (y-y')sine)
-W /2 Yy . R
(B.5)
Equation (B.5), with the use of the equality
2cosa = eJ2 4 ¢7J2 (B.6)
can give
oV e | L Jra(x_-x_)cos®
L 1,00 = 20y %Ldee m a0
mn [sin(k!,x)]
105




P ey - pe - v

w'/2
'[v dy' J"(y') cos(A(y-y')sine) - -
w /2 y

L
.l.x dx sin[k(zx-x)]cos(xxcose) .
o

£
{El J[ X ax' sin[k(zx-x')]cos(xx'cose) +
(o}

+ Ezlcos(xzxcose) - cos(klx)] (B.7)

In equation (B.7) if one applies straightforward integra-

tion, interchanges the order of integration and assumes that

wV/2 v
Lo, 871350733, 0opy) = 3,0mp) (3.8)
with x = |[x_-x_{| and p = {(x_-x )2 + (Y-Y')z}lj then -
mn m'n mn mn ’ -

equation (B.7) can be written as

U 20 '
Lmn”oup)} = Z‘ 20 13 —|d_|2" Jo (Axpp) # )
o ) .

P (lrx)o 03, % (ne1y* To W)
\ro/ ax|° (1)

+ JO( xm(n-l))] | (B.9)

where A, , B, are constant coefficients. _
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% APPENDIX C
: FORMULATION OF THE INTEGRAL (4.20) FOR THE TAIL
E‘ CONTRIBUTION
hl If we choose A in such a way that
cothf (A2-k2)%h) 2 1 (C.1)
then in the integral
ziv(”) . f” Aw(k,er,h;zl,zv) L\’{J (Ap)}
mn A ve1,2|F e ) f,0Le,B)| mn ©
with . (C.2)
. . 1 .
A" (x,e b5z, 2Y) - [El(ki-kz)mzk].fvxx(x,er,h;zl,z")
i .
+ (g e-Epl) - F (a e ,hizh,2Y) (C.3)
vz
and
i L3 N i
. jwu -u_ 2z 6.1
F o, h;z?,2Y) = 2(——%) e © 11,
vxx ¥ ’ ank]
. {1-6125v2+8i26v2[ucosh(uzv) + uosinh(uzv)]} .
. sinhfu(h-z" + z"anavl)l -« £,00,e,0)0  (C.4)
. . i
| 1 : jwu -u 26,
i ]r (A,er,h;zl,zv) = 2(———%) e ° i1 (cr-l) .
vz

4nki

i

{6, u,cosh(uh) - cizusinh[u(hfzi)]}'

{lesinh(uh) + szsinh[p(h-bs)]} A (C.5)

vv'-—-r.-r.
'
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the functions fl(x,er,h), fz(x,er,h) can be approximated by

fl(x,er,h) = sinh(uh)(u°+u) (c.6)
and

fz(k,er,h) = sinh(uh)(eruo+u) (C.7)

In equations (C.2) + (C.5), the z-coordinate for the source

currents (z\’) and observation points (zl) is given by

. t i=1] 0 wv=1
2! = zV = (C.8)
b+t i=2 -b. ve 2

If one substitutes (C.6) and (C.7) into (C.4), then the

function fl (A,er,h;zl,zv) can be written as

VXX
. . “u.t
i . jwu » e ©
f (,e h‘zl,zv) = 2(——2-0) 8.8 & — +
VXX Ty 41rki iTvl Yo 1 + U
Yo
-u t_-ubs
Ae e
(8518y2 * 8528105 u, *
1 + 2
u
Yo
1l1- — -u{2b_-t
A -~ut u s
* 612 6v2 u ‘e * u © 1 f10,er,h)
1+ 2
u
(C.9)
i .
Similarly, the function (A,cr,h;zl,z") can be approxi-

vz

mated by

i s jwu
F O,e.,h;zi,2Y) = 2(-—-—-%) .
vz r? ’ 41rki
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-u_t
A Yo 1 1
65181 5 © o - +
1+ & € * oo
[o] (o]
) _“Upt -ubg 1 1
* (851852 * 6528,0)5¢ e " o
1 *u—~ l‘eri]—
2 -u(st-t) 1 €
* 852820 ¢ u, i u_ (C.10)
1+ g l1eeagqr

In equations (C.9) and (C.10) u,,u are functions of A given

by

- 2 _ 12.\k
u = 02 - k%) (c.11)
u= % - k5" (€.12)
u
Because of (C.10) and (C.11), the functions 1 + 69 ,
‘ u
1+ %; y €.+ %; , 1 + €, 69 in (C.9) can be written as
1+ 5; =1 - 007! (C.13)
u .
1+2=21(1+e,037! (c.24)
Cr + %; = E;AT_T {1 - 83(1)}-1 (C.IS)
Yo 1 -1
1 + T - 'ér—,.,—-r {1 « e6(l)} (C.16)
where 2 2
” 0ce,y 1 X2 R (C.17)
Se® i F3 '
1
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0 <es(d) < Tc“—r)e:+ A Wi (C.18)
1

0<e,N) 27 753 (C.19)

02 e < g T3 (C.20

Also, in equations (C.9) and (C.10), the function

e'(“ot * ubg) can be approximated by

-(u.t + udb_) _
e © $° 4 g-utt (C.21)
where

t* = b, + t[1+2e,(1)) (C.22)

If one substitutes (C.13) - (C.16) and (C.21) into (C.9) and
(C.10), equation (C.2) takes the form

. jwu © -u_t
21\3 o) = I D (A (o] N

v -ut* |
+L 13,0001, + f(Az-kg)’f D,(Me

n
v © -u(Zb_-t)
L 13 (00)) du + I D.(AJe S
2 .2.% D3
mn ° (A ’kz)
v
L {3,00)} du (C.23)
mn
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where

s
D,(A) = l[E (kZ-12)+E,le) —11—31- + [E;RP-E k1 - 6,

(l-ez(A) ) € f1 . l-ez(A))|

T
(C.24)
D,(A) = |[E.,(k2-%%) + E. k] -
2 1 (kg 2
81150281201 (1+e, (1) 85,6, .
1 + e4(l)
* (E k E2]'](611 vZ 126v1) )
'(TT“lTXT - = ) (C.25)
94 Er I e6(U
2 .2 e, (1)65,8,,
D,(2) = l- [E, (k2-1%) + E.l) + 5.8
3 1(ky 2 Tre, () 12542
2¢e
1 T 1
(I*e4IX$ i} Tee ) 1+e6(1)) (C.26)

From all the equations above one can conclude that

Dy (A)-D; (A)| < [D;(=)-Dy(A)| = 0(a"2)

(C.27)

Theré{ore, equation (C.25) can be written as

juwu o« “ut v
z:n(-) - ("—%) z lDl(A) LAz_kz)‘! e ° L U uset)dy,
1

lwki ve=l,62 mn
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- B -ut* pV
+ D, (A) r2idy L {3, (up3)) du +
T
i + D3(A) J;AZ_kZ)k e LM{JO(Upi)}du +
2
+ 0 (A Zin (=) (C.28)
where
of = o1 + e, (4) (C.29)
and
(C.30)

ps = p(l + eS(A))
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APPENDIX D
JFAR-ZONE ELECTRIC FIELD OF A PRINTED STRIP DIPOLE

The far-field due to a printed strip dipole (see

Figure 6.1) is given by

Ee'\oki[cosecoswx - sinenz] (D.1)
and
E,~ki[-sinel, ] (p.2)
where L 24b
jwu +a w/2+
no= - —$ L Lax f gy gxt,y") -
417](1 1 ‘W/Z‘bl
+o -u_2 :
(2) 0o° sinh(uh)
'[m HO ()\p)e rl—(m Ada (D.3)
and

jwuo L+a1 W/2+b1d
n, = - (1-¢ )cos¢/ dx'f y'.
Z 41rk12 T a, ~w/24b,

‘o -u_2z
. J(x',y')f mBDoe e ° -

. Sinh(uh) coshguh% AZ A D.4
TN P d (b-4)
In equation (D.3) and (D.4), J(x',y') is the current

density on the strip dipole
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Cen . 1 N \
J(x',y") -22 A q_‘_ n2=:1 I 0 (X" (D.5)
)

with Jnx(x) given by equation (3.21) and fl(x,er,h),
fz(A.er,h) given by equations (2.31), (2.32). If the sub-
stitutions A = klsina, z = rcosd, p = rsiné are introduced
(where r,6,¢ describe the far-field in spherical coordin-
ates) together with the large argument asymptotic expansions
for Héz)(lo), H{Z)(Ap), Equations (D.3) and (D.4) can be

written as

jwuo 23 L"’al W/Z*b
N~ - 5 d f dx'f dy'J(x',y") -
4o -jrklcos(e-a)
f f(er,h,a)e da (D.6)

. L+a w/2+b
I Juu, _11_ a ; ¢j‘ ld '/‘ ld '
= - -g_)cos x y' -
2z qn nrky T 3, -w/2+b1

+o -jrklcos(e-a)
- J(x',y") f g(er,h,a) e da
(D.7)
where
- . sinacosa sin(ky/e -sin"a h)
f(erih.a) i J fl(a,er,h)
/sin6sina 0.8)
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and

h,a) = -k sink cosa . sin(k; v’ smza
/sinesina fl(a,er, )

_ cos(kller-sinza h)
. (b.9)
fz(a,er,h)

g (e,

The integrals with respect to a in equations (D.6) and (D.7)
have a stationary point at a = 8., Therefore, one can apply
the stationary phase technique for the evaluation of these

integrals and N,, N, are given by

xl
qu L+a w/2+b
n = - dy'J(x',y') .
x V -w /2+b
1
+o -jrklcos(e-a)
. f(sr,h,e) j e da (D.10)

L+a w/2+b

1
n, = - / Z] (1-¢ )cos¢f f dy' -
Z '"rk W/Z'.’bl

.4 rklcos (6-a)

*J(x'y') g(e,,h,8) e da (D.11)
- o
1f the substitutions r = R-x'sinfcos¢-y'sin¢sing, }1_,\“1{ then
the stationary phase method yields (D.12)
My = - 75 klR ¢(eoh,8) - 1 (D.13
and S -jk R

nz = _ﬁ_g _FT_ (e -1)cosé¢tand o(er,h 0).

Alepsh,8) 1 (D.14)
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where I
O(er,h,e) - %_ . l cos®o
1 cose-jJér-sinze coﬂkl/sr-sinze h)]
(D.15)
Al h,0) ,{ cosé
ercose+j/2r-sinze tan(k1/§r~sinze h)
(D.16)
and
2 L+a1 jklx'sinecoscp w/2+b1 jkly'sin¢sine
I = - dx' e J. dy' e .
W, "8 -w/2+b1
- ZN: x") )
_— I.J (x' ' .17)
()
Ye
After straightforward integration the integral I takes the
form A
cos(kllxsinecos¢)-cos(klx)
I = 21 Vi .
ky 2. 2
Lksin(kzx) 1- ;7 sin“6cos ¢
w1
{3 (k € singsine)- 2 S(wl,e,¢) -
o\'1 7 w e’’’
. ejklblslnosineejklalsinecos¢ .
n jkl(nzx)sinecos¢
Ine (D.18)
n=1
where -
1 cos 1(w/w:) w:
S(w.,e,o) = ]- cos k1 Ve sin¢sinécoso] do
o (D.19)
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From all the above, one can conclude that

-jk{R
2(r,6,6) = Sq—RK, (D.20)
ﬂ5 where
‘. R, = j 60 I (D.21)
- and
2 R, = 8Rgy + ORy, (D.22)
E with
| Rse = -cos¢ O(er,h,e)[cose + (sr-l)sinetane .
. A(er,h,e)] (D.23)
and
Rs¢ = sin¢ O(er,h,e) (D.243)
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